
Acid base titration

Neutral

Acid base titration

- An acid-base titration is a procedure used in quantitative chemical analysis to determine the concentration of either acid or a base.
- The equivalence of an acid-base titration is the point at which there are equal amounts (in moles) of H₃O+ and OH- in titration flask.

$H_3O^+ + OH^- \longrightarrow H_2O$

- End point of titration the point in a titration at which the indicator changes colour.
- The indicator should change colour sharply at the equivalence point.
- At the end point of the titration,
 - all the acid has been neutralised by the alkali
 - -the solution in the conical flask contain salt and water only.

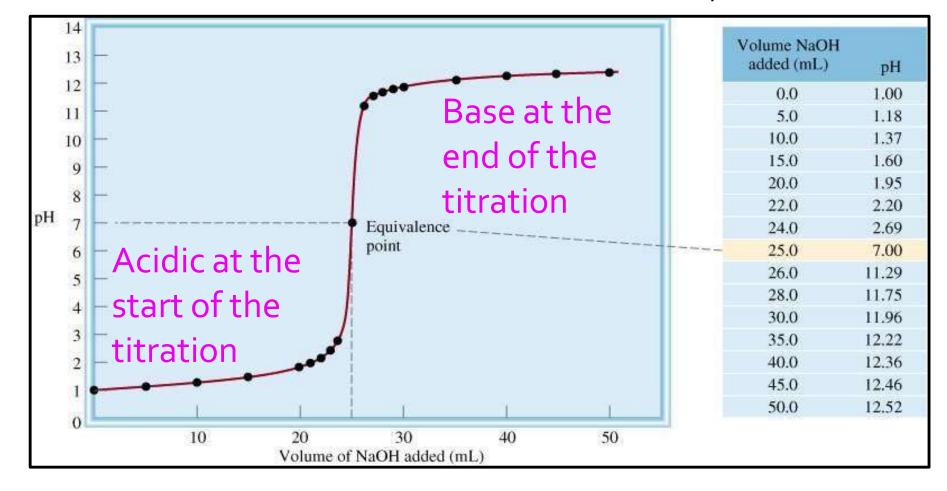
Acid base indicators

- Acid base indicators are weak organic acids that dissociate slightly in aqueous solutions to form ions.
- The indicators can change colour because their ions have colours that are different from undissociated molecule.

Types of acid-base reactions

Types of acid- base reactions	Example
Strong acid with strong base	HCl and NaOH
Strong acid with weak base	HCl and NH ₃
Weak acid with strong base	CH ₃ COOH and NaOH
Weak acid with weak base	CH ₃ COOH and NH ₃

The pH range and the change in colour for some indicators

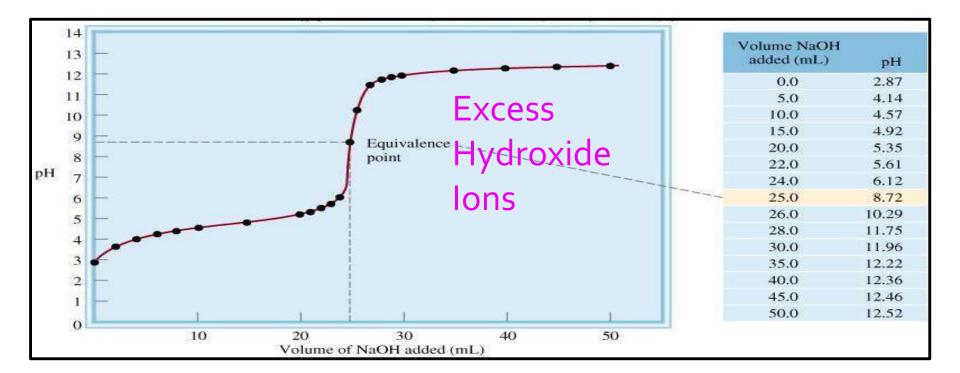

Indicator	pK _{Hln}	pH range	Colour change	
			Acid	Alkali
Methyl orange	3.7	3.2-4.2	Red	Yellow
Bromotymol blue	7.1	6.0-7.6	Yellow	Blue
Phenolphtalein	9.3	8.2-10.0	Colorless	Pink

pH of acid base reaction at its equivalent point

Acid	Base	pH at equivalence point	Indicators
Strong	Strong	= 7 (neutral)	Methyl orange Phenolphthalein
Strong	Weak	< 7 (acidic)	Methyl orange
Weak	Strong	> 7 (basic)	Phenolphthalein
Weak	Weak	pH depend on K _a and K _b of acid & base conc.	-

Titration of Strong Acid with Strong Base

$$NaOH_{(aq)} + HCI_{(aq)} \longrightarrow H_2O_{(l)} + NaCI_{(aq)}$$



Titration of Weak Acid with Strong Base

$$CH_3COOH_{(aq)} + NaOH_{(a\overline{q})} \rightarrow CH_3COONa_{(aq)} + H_2O_{(l)}^{(p)}$$

$$CH_3COO^-_{(aq)} + H_2O_{(l)} \longrightarrow OH^-_{(aq)} + CH_3COOH_{(aq)}$$

At equivalence point (pH > 7):

Titration of Weak Base with Strong Acid

$$HCI_{(aq)} + NH_{3(aq)} \longrightarrow NH_{4}CI_{(aq)}$$
 $NH_{4}^{+}_{(aq)} + H_{2}O_{(\overline{l})} \longrightarrow NH_{3(aq)} + H_{(aq)}^{+}$

At equivalence point (pH < 7):

